TChipD1-2-10m-Z100 Basic Tissue Chip
THIS IS A SINGLE CHANNEL DEVICE FOR APPLICATIONS FOR STARTERS OF TISSUE/ORGAN-ON-A-CHIP APPLICATIONS. THE MIDDLE LARGER AREA IS FOR TISSUE CULTURING AND TChipD1-2 IS DOUBLE LARGER THAN TChipD1-1 DEVICE. SYNTHETIC OR PRIMARY TISSUE SLICES ARE ALSO APPLICABLE TO BE CULTURED WHEN YOU CHOOSE UNBONDED CHIP OPTION.
BONDING TO GLASS OR ANOTHER PDMS LAYER OR UNBONDED PURCHASE IS OPTIONS ARE AVAILABLE.
ALL PRICES ARE WITHOUT VAT AND THE SHIPPING COSTS CAN BE SEEN AT THE SHOPPING CART AFTER PROVIDING SHIPPING ADDRESS.
Microfluidics is beneficial for saving reagent consumption. Tissue or organ-on-a-chip is a type of application of microfluidics technology for mimicking organism tissue sections for mainly pharmaceutical testing applications. Tissue-on-chips are engineered microsystems to be worked as organs like skin, liver or brain. Metabolism, physical structure and functional modeling is the primary issue.
Ultimately, this new technology aims to make pharmaceutical development, especially toxicology and efficacy screening, more reliable, because the tissue chips may provide researchers with insights into predicting more accurately how effective potential pharmaceuticals would be in humans.
It is also very promising for 3Rs (Reduction, Refinement, Replacement) for animal use in research experiments.
It is not only for representing human organ/tissues during pharmaceutical development process but also various areas of research given below
--- Life Sciences: molecular biology analysis of tissues slices, 3d culture of primary tissues, cell invasion and motility analysis in tissue-like structures
--- Pharmaceutical Sciences: Pharmaceutical toxicology and efficacy studies, understanding the metabolism of pharmaceuticals, pharmaceutical permeability between different tissue interactions
--- Biotechnology: complete organism mimicking
--- Diagnostic tech: metabolized pharmaceutical diagnosis
--- Others: testing of new molecules of cosmetics products, food additives, agrochemicals, etc on emulating tissue chips
Specification | Info |
Number of devices per chip | 4 devices |
Material | PDMS bonded on microscopy glass. Please also check the "Our Trip to PDMS Chips" blog post. |
Bonding technique | Oxygen plasma treatment |
XY Size of total chip | 25x73 mm2 of chip on 26x76 mm2 of std microscopy glass |
Z Height of PDMS chip | 3.0 - 4.0 mm |
XY Size of active site | X width is 10.0 mm and Y length is 10.0 mm. |
Z Height of microchannels | 100 micrometer |
Microchannel surface area | 100 mm2 of the active site and 128.75 mm2 for complete device |
Microchannel volume | 12,875 uL per device excluding ports |
Ports on top/edge | on Top |
Number of ports | 8 ports per device |
Pitch btw ports and edge-to-port | 3 mm and 3.5 mm |
Size / Shape of ports | 2 mm / Circle |
Suitable connector outer diameter | 2.0 - 2.5 mm |
microChannel geometry | Rectangular |
The layout of Active ports | ![]() |
Additional Requirements | Suggestions |
Pumping/Actuation | Flow and mixing of the liquids inside microchannels require low-pulsation flow. Some high-quality syringe pumps and pressure pumps work well. Peristaltic and piezoelectronic pumps may also be suitable but mind the possible relatively high pulsation. |
Fittings | All fittings in ufluidic.com are suitable for this chip. Any other connectors compatible with pitch and port size are also applicable. Reactive compatibility of the fittings is also important to be considered. |
Chemicals | It depends on the application of the researcher. |
Visualization | Epi-Fluorescent Microscopy is widely used together with microfluidic chips. Other analysis techniques should be determined by user researchers for the experiments where optical changes inside chips do not occur. |
These are some highly sited articles from literature. The chip designs are not identical but working is same in principle.
Ronaldso-Bouchard and Vunjak-Novakovic, 2018 |
Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in DrugDevelopment |
DOI:10.1016/j.stem.2018.02.011 |
Ahadian et.al., 2017 |
Organ‐On‐A‐Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies |
DOI:10.1002/adhm.201700506 |
Perez-Rodriguez et.al., 2018 |
3D Cell Migration Studies for Chemotaxis on Microfluidic-Based Chips: A Comparison between Cardiac and Dermal Fibroblasts |
DOI:10.3390/bioengineering5020045 |
Li et.al., 2018 |
Advances in tumor-endothelial cells co-culture and interaction on microfluidics |
DOI:10.1016/j.jpha.2018.07.005 |
Song et.al., 2018 |
Microfabrication-Based Three-Dimensional (3-D) Extracellular Matrix Microenvironments for Cancer and Other Diseases |
DOI:10.3390/ijms19040935 |
Sleeboom et.al., 2018 |
Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches |
DOI:10.1242/dmm.033100 |
Kullanım Kılavuzu | Yakında eklenecektir |
Akış Testi - Multimedya | |
Uygulama Örneği - Multimedya | Yakında eklenecektir. |